Камера Горяева. Практическое применение

Лабораторная камера Горяева, названная в честь русского врача, профессора Казанского университета Горяева Н.К., является специальным монолитным предметным стеклом, предназначенным для подсчета количества клеток в заданном объеме жидкости. Кроме того, используя камеру Горяева можно определить увеличение микроскопа. Камеры Горяева широко применяются в области клинических и биомедицинских исследований.

Популярные области применение камеры Горяева:

  • Подсчет форменных элементов крови
    • Подсчет эритроцитов
    • Подсчет лейкоцитов
    • Подсчет ретикулоцитов
    • И т.п.
  • Подсчет форменных элементов мочи
  • Исследование эякулята – оценка количественных и качественных параметров сперматозодиов
  • Вычисление концентрации спор в вакцине
  • Подсчет ооцист в препарате
  • И т.п.

Камеры Горяева выпускаются в двух модификациях: двухсеточные (двухкамерные) и четырехсеточные (четырехкамерные). В определении цены камеры Горяева важную роль играет качество шлифовки стекла, метод нанесения сетки – лазерная гравировка или же вакуумное напыление.

Что собой представляет камера Горяева? Камера Горяева есть не что иное, как прозрачное монолитное предметное стекло поперечными прорезями и нанесенной специальным образом микроскопической сеткой. В случае двухкамерной камеры Горяева мы имеем четыре прорези, образующие три поперечно расположенных площадки, при этом средняя площадка разделена продольной прорезью на две одинаковых камеры, на каждой из поверхности площадки которых нанесена сетка. В случае же четырехкамерной камеры Горяева мы получаем предметное стекло с пятью прорезями, образующих четыре площадки, при этом две внутренние дополнительно разделены продольной прорезью для получения четырех камер с нанесенной микроскопической сеткой на поверхности площадок.

Рассмотрим более подробно особенности сетки. Специальная сетка наносится на внутренние площадки, расположенные ниже соседних боковых площадок на 0.1мм. Боковые площадки предназначены для притирания покровного стекла до появления Ньютоновских колец. Как правило, используют специальное покровное стекло для камеры Горяева с закругленными краями. После притирания покровного стекла создается камера, закрытая с двух боковых сторон, а с двух других остаются щели (так называемые, капиллярные пространства), через которые и заполняют камеру. Что конкретно представляет собой сетка? Микроскопическая сетка камеры Горяева расчерчена на большие и маленькие квадраты, сгруппированные различными способами. Сетка Горяева содержит 225 больших квадратов (15 рядов по 15 больших квадратов в каждом), разграфленных вертикально, горизонтально, крест-накрест и неразграфленных. При этом размеры малых делений клетки сетки составляют 0.05мм, а больших – 0.2мм. Важно, что малый квадрат со стороной 0.05мм во всех сетках является постоянной величиной. Не трудно рассчитать, что площадь малого квадрата равна 0.0025 мм2, а большого квадрата – 0.04мм2. Тогда получаем, что объем жидкости над квадратом, образованным большими делениями сетки Горяева, составляет 0.004 микролитра.

Подсчитав количество форменных элементов (ФЭ) над большим квадратом, можно подсчитать плотность данного типа клеток в суспензии по формуле:

X=M*2.5*10^5

где X — количество ФЭ/мл, M- количество ФЭ над большим квадратом.

При работе с камерой Горяева важно следить, чтобы ее рабочие поверхности оставались сухими и чистыми. Кроме того, при подсчете форменных элементов нельзя допускать наличие воздушных пузырей на сетке камеры, так как они могут мешать точности подсчета.

После работы с камерами Горяева следует выполнить их дезинфекцию одним из допустимых способов:

  1. Погружение в 70%-ный раствор этилового спирта на 30 минут
  2. Погружение в 4%-ный раствор формалина на 60 минут при комнатной температуре.

Приведем примеры применения камеры Горяева и некоторые формулы.

Практическое применение камеры Горяева

Прежде чем приступить к проведению лабораторных исследований, рекомендуется тщательно протереть камеру Горяева небольшим кусочком чистого бинта, слегка смоченного в спирте. Мы не советуем использовать для этих целей вату, так как она может оставить волокна. Таким же образом следует обработать и покровное стекло для камеры Горяева. Учтите, что при использовании низкокачественного спирта на поверхностях может образоваться осадок, тем или иным образом мешающий проведению исследований. Чтобы избежать появления связанных с этим явлением нежелательных эффектов, рекомендуется дополнительно протереть камеру и покровное стекло чистым марлевым шариком без спирта. Притирание покровного стекла к камере должно быть выполнено очень тщательно до появления на месте контакта радужных колец (так называемых, цветных колец Ньютона) с обоих краев. Для лучшего притирания можно воспользоваться одной хитростью и слегка выдохнуть воздух на камеру и покровное стекло, так чтобы небольшое количество влаги сконденсировалось на поверхностях стекол, что обеспечит лучший контакт.

При отсутствии специальных покровных стекол, прилагающихся к камере Горяева, можно использовать обычные стандартные покровные стекла.

Помимо целевого использования камеры Горяева для подсчета форменных элементов крови и т.п., данное стекло может расцениваться как своеобразный эталон для определения увеличения микроскопа. Для этого следует воспользоваться следующей формулой:

X=(p1-p2)/(a*N)

где X – это увеличение микроскопа; p1 – положение левой границы клетки камеры Горяева; p2 – положение правой границы клетки или группы клеток; N – количество клеток между измеряемыми границами; a — размер клетки камеры Горяева (равен 0,05 мм).

Камера Горяева также используется для подсчёта количества клеток в культуре.

Для подсчета клеточных элементов в жидкостях, содержащих их в меньших концентрациях, используются аналогичные по конструкции камеры Фукса-Розенталя и Нажотта, имеющие большую глубину – 0.2 мм и 0.5 мм соответственно. Эти же камеры используются в альгологии для количественного учета фитопланктона. Часто камера Фукса-Розенталя используется для подсчета форменных элементов спинномозговой жидкости. В отличие от камеры Горяева, большие квадраты сетки Фукс-Розенталя не разграфлены и сгруппированы по 16 квадратов, причем каждая такая группа ограничена тройными линиями.

Подсчет форменных элементов крови

Наиболее часто камеры Горяева используются именно для определения форменных элементов крови при проведении лабораторных исследований. Так для подсчета эритроцитов кровь необходимо развести в 200 раз, лейкоцитов – в 20 раз. Количество форменных элементов (ФЭ) в 1мкл крови определяют по формуле:

N=m*4000*s/q,

где N – искомое количество ФЭ в 1 мкл крови; m – число ФЭ в определенном количестве малых квадратов; q – количество малых квадратов сетки камеры Горяева, в которых подсчитывались ФЭ, s – степень разведения крови.

Формула для подсчета эритроцитов

Для подсчета эритроцитов используются 5 больших или 80 малых квадратов сетки, расположенных по диагонали. Таким образом, получаем следующую формулу:

N=m*4000*200/(5*16)=m*10000

Формула для подсчета лейкоцитов

Для подсчета лейкоцитов можно использовать один из трех методов:

1. Лейкоциты считают в 64 больших (пустых) квадратах

N=m*4000*20/(64*16)=m*78,125≈m*78

2. ​Лейкоциты считают по всей сетке в 169 больших квадратах (рекомендуется для образцов крови с выраженной лейкопенией)

N=m*4000*20/(169*16)≈m*29,6

3. Лейкоциты считают в 100 больших квадратах (64 пустых + 36 разграфленных квадратов по периметру сетки)

N=m*4000*20/(100*16)=m*50

Таблица нормальных значений:

Форменные элементы Норма
Эритроциты Мужчины 4 000 000 – 5 100 000 в 1 мкл
Женщины 3 700 000 – 4 700 000 в 1 мкл
Лейкоциты 4 000 – 9 000 в 1 мкл

Подсчет форменных элементов в мочевом осадке

Для определения ФЭ в мочевом осадке при анализах мочи по Нечипоренко, Аддис-Каковскому, Амбурже осуществляется по всей сетке Горяева и рассчитывается по формуле:

Общая характеристика камеры Горяева

Приспособление представлено толстым стеклом, в котором расположены углубления. Они необходимы для залития биологической жидкости человека. Сверху помещается тонкое предметное стекло, которое способствует устранению пузырьков воздуха и распределению биологической жидкости по углублению.
Устройство позволяет подсчитывать количество лейкоцитов и эритроцитов с помощью микроскопа, направленного на углубление. Полученные данные подставляют в формулу, чтобы выявить число клеток в заданном объеме жидкости.

Под микроскопом врач-лаборант видит большие и малые квадраты, которые в сумме составляют 225. За одно исследование необходимо подсчитать клетки в 100 квадратах.

Обслуживание и уход за камерой Горяева

Чтобы приспособление выполняло свои функции, врач-лаборант правильно подсчитал форменные элементы, за ним необходимо ухаживать. Оно должно быть всегда чистым, стерильным. Наличие инородных предметов затруднит исследование.

В ходе работы при подсчете эритроцитов в камере Горяева выполняют следующие дезинфицирующие манипуляции:

  • с помощью марлевой салфетки, опущенной в спиртовой раствор, протирают все углубления камеры;
  • сухой марлевой салфеткой повторно протирают поверхность;
  • приспособление готово к работе, если с обеих его сторон появились радужные круги.

После окончания работы устройство дезинфицируют повторно:

  • биологическую жидкость удаляют;
  • камеру помещают в спиртовой раствор на полчаса, если используются другие дезинфектанты, время удлиняют до 60 минут;
  • приспособление достают, протирают насухо до появления радужных кругов;
  • стекло оставляют на сухой поверхности.

Определение протромбинового времени.

Протромбиновый тест Квика характеризует процесс свёртывания крови при его запуске по внешнему механизму и имеет исключительное значение для определения активности фактора VII.

ЦЕЛЬ: ознакомиться с методикой.

ОСНАЩЕНИЕ: раствор тромбопластина (стандартный); 3,8% раствор цитрата натрия; 0,5% раствор хлорида кальция; капилляр Панченкова; пробирка, водяная баня или водяной термостат, поддерживающий температуру 37º С; секундомер.

ХОД РАБОТЫ: В капилляр Панченкова набирается раствор цитрата натрия до о, производится прокол пальца и в тот же капилляр (не удаляя цитрат натрия) набирается кровь, пока уровень набранной смеси не достигнет метки «0» («К»). Содержимое капилляра переносится в пробирку, которая помещается в водяную баню на 1 минуту.

В пробирку с цитратной кровью вносится раствор тромбопластина капилляром Панченкова, заполненным до метки «0» («К»), и такое же количество раствора хлорида кальция. Включается секундомер. Пробирка в водяной бане осторожно покачивается. Секундомер останавливается в тот момент, когда образуется сгусток крови. Полученное значение – «протромбиновое время» (ПВ).

Зная ПВ испытуемого (ПВИ) и нормальное протромбиновое время (ПВН), которое зависит от активности стандартного тромбопластина (оно бывает указано на флаконе, обычно 12 – 18 секунд; проверяется на нескольких образцах донорской крови), можно рассчитать протромбиновый индекс (ПИ): ПИ = ПВН / ПВИ * 100.

В норме ПИ составляет 90-100%. Чем больше протромбиновое время, свидетельствующее о гипокоагуляции крови, тем меньше значения протромбинового индекса.

Определение времени свертывания крови.

Свёртывание крови in vitro обусловлено внутренним механизмом, запускаемым за счёт контактной активации фактора XII (Хагемана). В норме свёртывание капиллярной крови начинается через 0,5 – 2 минуты, заканчивается через 3 – 5 минут. Свёртывание крови, взятой из вены, составляет 5 – 10 минут.

ЦЕЛЬ: ознакомиться с определением времени свёртывания капиллярной крови визуальным методом.

ОСНАЩЕНИЕ: принадлежности для взятия крови, секундомер

ХОД РАБОТЫ: после прокола пальца, первая капля удаляется, в капилляр Панченкова набирается 25 мм крови, включается секундомер. Путём наклона капилляра на 45º кровь переводится на его середину, затем, через каждые 30 секунд, капилляр наклоняется на 45º в одну сторону, возвращается в горизонтальное положение, через 30 секунд наклоняется в другую сторону.

Вычисление цветного показателя (цветной коэффициент)

Цветной показатель выражает среднее содержание гемоглобина в одном эритроците. В норме цветной коэффициент равняется 1,0 при 100% гемоглобина и 5 000 000 эритроцитов в 1 мм3 крови. Его рассчитывают исходя из следующей пропорции: найденное количество гемоглобина (в единицах) так относится к его нормальному количеству, как найденное количество эритроцитов к их нормальному числу. Например, если найденный гемоглобин равен 88 ед., а количество эритроцитов 4 8000 000 в 1 мм3, то цветной показатель равен 0,91. Практически легче рассчитать цветной показатель упрощенным способом: путем умножения найденного количества гемоглобина на 5 и деления полученного произведения на первые три цифры подсчитанных эритроцитов.

При количестве эритроцитов меньше 1 000 000 делить надо на две первые цифры подсчитанного числа эритроцитов. Цветной показатель в норме равен 0,9-1,1.

Правило Егорова для подсчета форменных элементов

Правильный подсчет клеток в сетке

Подсчет форменных элементов крови ведется под микроскопом с применением соответствующего увеличения, чаще всего используется окуляр х10. Подсчитывают число клеток в тех больших квадратах, что разделены на 16 средних, начинают считать от верхнего левого и двигаются вниз направо, захватывая при подсчете 5 больших квадратов.

Для того, чтобы верно определить количество клеток в заданном объеме крови, необходимо исключить повторный подсчет тех форменных элементов, что располагаются на границах или узлах сетки. Такая ошибка привела бы к увеличению подсчитываемого показателя, для ее устранения было сформулировано правило Егорова. Оно гласит, что к данному квадрату относятся те элементы, что лежат в его пределах, не касаясь нанесенных линий, а также те клетки, что располагаются на верхней и левой сторонах квадрата. Те клетки, что «касаются» нижней или правой стороны, при подсчете учитываться не должны.

Как правильно рассчитать количество кровяных клеток?

Подсчет эритроцитов в камере Горяева осуществляется в пяти больших квадратах, что равно восьмидесяти малым. Для того чтобы избежать ошибки из-за неравномерного распределения образцов крови, выбирают квадраты, расположенные по диагонали. Отдельное внимание обращают на клетки, расположенные по краям, — здесь считают эритроциты на левой и верхней стенках, но не берут во внимание те, которые расположены на нижней и правой линиях.

Для того чтобы определить количество эритроцитов в миллилитре крови, число клеток в пяти больших квадратах умножают на 20 000 (при разведении в 400 раз).

Лейкоциты в камере Горяева считают по-другому. Здесь нужно вычислить количество элементов по меньшей мере в сотне больших квадратов. Полученное количество делят на 1600, после чего умножают на 4000, а затем на 20 (степень разведения).

Лейкоцитарная формула

Все виды лейкоцитов составляют лейкоцитарную формулу. По ней можно выявить определённые патологии. Нормы формулы меняются в зависимости от возраста и периода жизни человека. Сдвиг хорошо заметен у женщин во время беременности или после родов.

Применяются разные способы подсчёта соотношения видов этих клеток, но все они связаны с тем, что более тяжелые клетки (базофилы, например) располагаются ближе к краю мазка, а лимфоциты, как легкие клетки, остаются в середине.

  • Метод Филипченко. В данном способе подсчёт осуществляется по поперечной прямой границы одного конца к другому. Мазок при этом мысленно разделяют на три части.
  • Метод Шиллинга. Лейкоциты подсчитывают в четырех участках мазка.

Полученные данные записываются в таблицу. Индивидуально количество каждого вида белых клеток крови высчитывается по формулам. Отмечаются те элементы, которые попали в поле зрения. Счёт ведётся до того, момента, пока сумма всех подсчитанных клеток не составит 100.

Рефлекторные изменения кровенаполнения периферических сосудов.

ЦЕЛЬ РАБОТЫ: зафиксировать изменение ИНП, связанное с изменением кровенаполнения периферических сосудов

ХОД РАБОТЫ: надеть датчик на последнюю фалангу указательного пальца правой руки сидящего испытуемого. Подключить модуль «ОEM-OXI-CAB» к USB порту компьютера. Запустить программу «OXI_Test.exe». Подождать, пока появятся усредненные значения параметров, измеряемых пульсоксиметром и зафиксировать их.Поместить левую свободную от датчика руку в пластиковую ёмкость с холодной водой. Зафиксировать изменение показателей. Убрать ёмкость с водой, подождать восстановления исходных значений измеряемых показателей. Поднять правую руку с датчиком над головой. Зафиксировать показатели через несколько секунд после подъёма руки и через минуту.

ЧП Сатурация SpO2 ИНП
В покое
Левая рука в холодной воде
Правая рука поднята вверх
Пр. р. поднята вверх через 1 м.

Проанализировать изменения зарегистрированных параметров и сделать вывод.

Взятие крови в пробирки для подсчета эритроцитов и лейкоцитов по Н. М. Николаеву

Для каждого взятия крови берут две нумерованные пробирки, серологическую и агглютинационную. В серологическую пробирку помещают 4 мл 3% раствора хлористого натрия или реактива Гайема, а в агглютинационную – 0,4 мл 3 % раствора уксусной кислоты. В каждую пробирку вносят по 0,02 мл крови, взятой капилляром от гемометра, и тотчас же смешивают содержимое пробирок, вращая их между ладонями.

В серологической пробирке (для эритроцитов) получают разведение крови в 200 раз, а в агглютинационной (для лейкоцитов) – в 20 раз.

Норма лейкоцитов и отклонения

Норма лейкоцитов у людей составляет 4,0 – 9,0 × 10⁹/л. Или, по-другому, в 1 кубическом мм крови располагается примерно 6000 белых кровяных клеток.

На отклонения от нормы могут влиять внешние физиологические факторы:

  • приём пищи перед сдачей крови;
  • стресс;
  • беременность или менструация у женщин;
  • переохлаждение или перегрев;
  • большая физическая нагрузка перед сдачей анализов.

Если количество белых кровяных клеток превышает 9,0 × 10⁹/л (повышены лейкоциты), такое состояние называется лейкоцитозом. Подобную картину можно увидеть при злокачественных заболеваниях крови, инфекциях, поражениях радиацией и отравлениях.

Лекарственные препараты тоже способны увеличить количество лейкоцитов. Некроз тканей, обильные кровотечения, в том числе в результате операций, почечная кома, болезни сердца – всё это может привести лейкоцитозу.

Падение количества лейкоцитов ниже 3,9 × 10⁹/л называется лейкопенией. Однако у некоторых людей фиксируется постоянное число лейкоцитов в количестве 3,5 × 10⁹/л. Принято считать, что у таких людей сохраняется резерв этих клеток в тканях в 50 раз больше, нежели в крови. Еще встречается функциональная лейкопения после введения анальгетиков, сульфаниламидов и других лекарственных препаратов, после долгой мышечной работы, в результате поражения инфекциями и вирусами (тиф, грипп, корь).

Методика подсчёта лейкоцитов в моче

В моче подсчитывается количество лейкоцитов в камере Горяева по Нечипоренко. Этот анализ нужен для мониторинга заболеваний почек. Периодическое исследование мочи помогает проследить за правильностью лечения и эффективностью назначенной терапии.

Сбор мочи

В изучение идёт только первая утренняя моча в середине мочеиспускания. Для пациента важно следовать основным правилам сбора этого биоматериала. Специальной дополнительной подготовки для исследования не требуется.

Методика расчета

10 мл свежесобранной мочи центрифугируют в течение трёх минут при 2,5 тыс. оборотов в минуту. Перед этим необходимо проследить, чтобы моча, во избежание частичного распада клеток, имела слабокислую реакцию.

При помощи пипетки с узким оттянутым концом убирают верхний слой. В пробирке оставляют от 0,5 мл мочи до 1 мл в зависимости от объёма осадка.

Осадок аккуратно перемешивают с надосадочной жидкостью. Полученным раствором заполняют счётную камеру Горяева по схожему принципу, что используется при подсчёте ФЭ крови. Камеру оставляют в покое от 3 до 5 минут.

Лейкоциты необходимо подсчитать в больших квадратах по всей сетке с окуляром 7х и объективом 40х.

Полученная цифра используется в формуле:

Х = (а/0,9) × (1000/V)

Х – число лейкоцитов в 1 мл мочи.

а – подсчитанное количество, делённое на объём камеры в 1 мкл осадка мочи.

v – Количество мочи, взятой для исследования.

1000 – количество осадка.

Это важно! Норма лейкоцитов: в 1 мл мочи не более 2 × 10³ белых кровяных клеток.

Практические работы с модулем oem-oxi-cab .

Микролюкс «ОEM-OXI-CAB» является полностью законченным модулем для мониторинга основных параметров пульсовой оксиметрии. Модуль измеряет следующие параметры:

сатурация (SpO2),

частота пульса (ЧП),

индекс наполнения пульса (ИНП),

фотоплетизмограмму (ФПГ).

Сатурация SpO2 – различают два вида значений: текущее значение (измеренное за последний кардиоинтервал) и усредненное значение. На дисплее обычно отображается усредненное значение.

ЧП – различают два вида значений: текущее значение частоты пульса (измеренное за последний кардиоинтервал) и усредненное значение. На дисплее обычно отображаются оба значения.

ИНП – различают два вида значений: текущее значение (измеренное за последний кардиоинтервал) и усредненное значение. На дисплее обычно отображается усредненное значение. ИНП пропорционален степени модуляции оптического сигнала, обусловленного пульсацией крови (т.е. пропорционален количеству крови, пульсирующему в месте расположения датчика).

Индекс Перфузии (% mod) = ИНП / 20.

Диапазон измерения Индекса Перфузии будет от 0 до 12,5 % modс шагом 0,05 %mod.

Определение времени остановки кровотечения.

В норме время остановки кровотечения не превышает 4 мин. Удлинение при тромбоцитопениях и тромбоцитопатиях (нарушениях функциональных свойств тромбоцитов).

ЦЕЛЬ: ознакомиться с методикой.

ОСНАЩЕНИЕ: принадлежности для взятия крови, секундомер, стерильная фильтровальная бумага.

ХОД РАБОТЫ: производится прокол кончика пальца скарификатором. Включается секундомер, каждые 30 секунд фильтровальной бумагой снимается капля крови, выступившая самостоятельно (без надавливания). После остановки кровотечения секундомер останавливается, палец обрабатывается настойкой йода.

7.1. Электрические явления в сердце.

Физиологические свойства и особенности сердечной мышечной ткани. Современные представления о субстрате, природе и градиенте автоматии. Проводящая система сердца и ее роль. Характеристика электрической активности клеток миокарда

предсердий, желудочков и проводящей системы. Соотношение возбуждения, сокращения

и возбудимости миокарда. Реакция сердечной мышцы на дополнительные раздражения

(экстрасистолы).

Методы исследования электрической активности сердца: электрокардиография, векторкардиография, магнитокардиография. Анализ происхождения зубцов и интервалов на ЭКГ. Клиническое значение ЭКГ.

Вопросы программированного контроля по теме занятия.

  1. Свойства сердечной мышцы, особенности её сократимости?
  2. Что характерно для потенциалов действия кардиомиоцитов?
  3. Каково функциональное значение рефрактерности клеток миокарда?
  4. Какие причины обуславливают фазу плато потенциалов действия в сердце?
  5. Чем отличаются потенциалы действия в предсердиях и желудочках?
  6. Каковы функции проводящей системы сердца?
  7. Каковы основные причины спонтанной диастолической деполяризации?
  8. Какие ионы обеспечивают электромеханическое сопряжение в миокарде?
  9. О каких процессах и где позволяют судить данные электрокардиографии?
  10. Какой процесс и где отображает каждый зубец, интервал, сегмент ЭКГ?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *